Computing Query Probability with Incidence Algebras

Nilesh Dalvi, Karl Schnaitter and Dan Suciu

ABSTRACT

We describe an algorithm for evaluating queries over probabilistic
databases using incidence algebras. The queries we consider are
unions of conjunctive queries, and the probabilistic database are
tuple-independent structures. Our algorithm runs in PTIME, on
a subset of queries called “safe” queries. The algorithm is very
simple, and easy to implement in practice, yet it is highly non-
obvious. The role played by the incidence algebras is that it allows
us to avoid computing subqueries that are provably hard.

1. INTRODUCTION

In this paper we show how to use incidence algebras to evaluate
unions of conjunctive queries over probabilistic databases. These
queries correspond to the select-project-join-union fragment of the
relational algebra, and they also correspond to existential positive
formulas of First Order Logic. A probabilistic database, also re-
ferred to as a probabilistic structure, is a pair (A, P) where A =
(A, R, ..., R{)is first order structure over vocabulary Ry, . . ., Ry,
and P is a function that associates to each tuple ¢ in A a number
P(t) € [0,1]. A probabilistic structure defines a probability distri-
bution on the set of substructures B of A by:

k

PaB) = [[CTI PO x

=1 teRB

II a-prw)

teRA—RP

We describe a simple, yet quite non-obvious algorithm for com-
puting the probability of an existential, positive FO sentence P,
Pa(®)", based on Mobius’ inversion formula in incidence alge-
bras. The algorithm runs in polynomial time in the size of A. The
algorithm only applies to certain sentences, called safe sentences,
and is sound and complete in the following way. It is sound, in that
it computes correctly the probability for each safe sentence, and
it is complete in that, for every fixed unsafe sentence ®, comput-
ing Pa (®) is hard for #P, even when all probabilities in the input
structure are 1/2 or 1. The algorithm is more general than, and

'This is the marginal probability, defined as:
ZB:B\:q) Pa(B).

Pa(®) =

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

significantly simpler than a previous algorithm for conjunctive sen-
tences [5].

The need to identify tractable queries over probabilistic data has
been addressed in several previous works [4, 6, 11, 10]. These
works provide conditions for the tractability of queries without self-
joins. The only exception is [5], which considers conjunctive queries
with self joins. We extend those results to a larger class of queries,
and at the same time provide a very simple algorithm. On the other
hand, some of the earlier work is complimentary to ours, e.g., the
results that consider the effects of functional dependencies [11].

Our results have applications to probabilistic inference on pos-
itive Boolean expressions [7]. For every tuple ¢ in a structure A,
let X; be a distinct Boolean variable. Every existential positive
FO sentence ® defines a positive DNF Boolean expression over the
variables X, sometimes called lineage expression, whose proba-
bility is the same as Pa (®). Our result can be used to classify the
complexity of computing the probability of Positive DNF formulas
defined by a fixed sentence ®. For example, the two sentences’

d =
P, =

R(x), S(z,y) vV S(x,y), T(y) V R(x), T(y)
R(z),S(z,y) vV S(z,y), T(y)

define two classes of positive Boolean DNF expressions (lineages):

Fo= V XYooy) YanZv /) XY

a€R,(a,b)ES (a,b)eS,beT a€ER,bES
F, = \/ XoYar V \/ Ya,0, Zb
a€R,(a,b)ES (a,b)eS,beT

Our result implies that, for each such class of Boolean formulas,
either all formulas in that class can be evaluated in PTIME in the
size of the formula, or the complexity for that class is hard for #P,
even if all probabilities are either 1/2 or 1; e.g. F} can be evaluated
in PTIME using our algorithm, while F5 is complete for #P.

The PTIME algorithm we present here relies in a critical way
on an interesting connection between existential positive FO sen-
tences and incidence algebras [13]. By using the Mobius inversion
formula in incidence algebras we resolve a major difficulty of the
evaluation problem: a sentence that is in PTIME may have a subex-
pression that is hard. This is illustrated by ®; above, which is in
PTIME, but has ®5 as a subexpression, which is hard; to evaluate
®; one must avoid trying to evaluate ®. Our solution is to ex-
press P(®) using Mobius’ inversion formula: subexpressions of
® that have a Mobius value of zero do not contribute to P(®),
and this allows us to compute P(®) without computing its hard
subexpressions. The Mobius inversion formula corresponds to the

“We omit quantifiers and drop the conjuct they are clear from the
context, e.g. ®o = JxIy(R(z) A S(z,y) vV S(z,y) AT(y)).

inclusion/exclusion principle, which is used ubiquitously in prob-
abilistic inference: the connection between the two in the context
of probabilistic inference has already been recognized in [8]. How-
ever, to the best of our knowledge, ours is the first application of
the full power of Mobius inversion formula for probability compu-
tation, by exploiting its ability to remove hard subexpressions from
a computation.

Another distinguishing, and quite non-obvious aspect of our ap-
proach is that we apply our algorithm on the CNF, rather than the
more commonly used DNF representation of existential, positive
FO sentences. This departure from the common representation of
existential, positive FO is necessary in order to handle correctly
existential quantifiers.

Our algorithm is conceptually very simple, and relies on two
techniques: the Mobius inversion formula (to remove Boolean con-
nectives), and independence (to remove existential variables). In
the last part of the paper, we make a strong claim: that using Mo-
bius’ inversion formula is a necessary technique for completeness.
To support this claim we examine how other techniques commonly
used today in probabilistic inference could be applied to the evalu-
ation problem for existential positive FO sentences, and show that
they cannot lead to a complete PTIME algorithm. Such common
techniques are: independence, disjointness, and conditioning. In
conditioning, one chooses a Boolean variable X, then computes
P(F)=P(F | X)P(X)+ P(F | -X)(1 — P(X)). We give
a PTIME algorithm based on these three techniques, for existential
positive FO sentences, where conditioning is performed on sub-
formulas of ® instead of Boolean variables. We prove that this
algorithm is not complete. More precisely, we show a formula &
(Fig. 2) that is computable in PTIME, but for which it is not pos-
sible to compute P(®P) by using a combination of independence,
disjointness, and conditioning on subformulas. On the other hand,
we note that conditioning has certain practical advantages that are
lost by Mobius’ inversion formula: by repeated conditioning one
can construct a Free Binary Decision Diagram [14], which has fur-
ther applications beyond probabilistic inference. There seems to be
no procedure to convert Mobius’ inversion formula into FBDDs;
in fact, we conjecture that the formula in Fig. 2 does not have an
FBDD whose size is polynomial in that of the input structure.

In earlier work [4, 6] we have studied the evaluation of conjunc-
tive queries (sentences) without self-joins on probabilistic struc-
tures. For this restricted language, the safe sentences are precisely
the hierarchical queries, and the evaluation algorithm is very sim-
ple. This algorithm has been adopted and extended by several sys-
tems [1, 11]. In more recent work [5] we have removed the restric-
tion on no self-joins, but the resulting algorithm turned out to be
very complex and impractical. It relied on a large number of in-
termediate steps, whose completeness was never formally proven.
Instead of Mobius’ inversion function, it used a difficult technique
called “erasers”, which corresponds to conditioning: as we show
in this paper, conditioning does not lead to a complete algorithm
when applied to the all existential positive sentences.

Finally, we mention that a different way to define classes of
Boolean formulas has been studied in the context of the constraint

satisfaction problem (CSP). Creignou, and Creignou and Hermann [3,

2] showed that the counting version of the CSP problem has a di-
chotomy into PTIME and #P-complete. These results are orthogo-
nal to ours: they define the class of formulas by specifying the set
of Boolean operators, such as and/or/not/majority/parity etc, and
do not restrict the shape of the Boolean formula otherwise. As a
consequence, the only class where counting is in PTIME is defined
by affine operators: all classes of monotone formulas are hard. In
contrast, in our classification there exist classes of formulas that are

in PTIME, for example the class defined by ®; above.

The paper is organized as follows. We describe incidence alge-
bras and their connection to existential, positive FO in Sec. 2, and
describe how to use independence in Sec. 3. In Sec. 4 we describe
ranking, a necessary technique to make things work. We give our
complete algorithm in Sec. 5, and describe an incomplete algorithm
based on conditioning in Sec. 6.

2. EXISTENTIAL POSITIVE FO AND IN-
CIDENCE ALGEBRAS

We describe here the connection between positive FO and inci-
dence algebras. We start with basic notations.

2.1 Ecxistential Positive FO

Fix a vocabulary R = {R1, R, ...}. A conjunctive sentence ¢
is sentence obtained from positive relational atoms using A and 3:

p = Ha_c.(rl/\.../\m) 2

We allow the use of constants. Var(p) = T denotes the set of
variables in ¢, and Atoms(p) = {r1,...,7,} the set of atoms.
Consider the undirected graph where the nodes are Atoms(p) and
edges are pairs (r;,7;) s.t. r;, 7; have a common variable. A com-
ponent of ¢ is a connected component in this graph. Each conjunc-
tive sentence ¢ can be writen as:

e = mMmNAN... AV

where each y; is a component; in particular, v; and -y; do not share
any common variables, when i # j.
A disjunctive sentence is an expression of the form:

/ ! ’
= mV...V7,
where each +; is a single component.

An existential, positive sentence @ is obtained from positive atoms
using A, 3 and V; we will refer to it briefly as positive sentence. We
write a positive sentence either in DNF or in CNF:

® = oiV...Vom 3)
D = QIA. APy)

where ¢; are conjunctive sentences in the DNF (3), and o) are
disjunctive sentences in the CNF (4). The DNF can be rewritten
into the CNF by:

o = \/ /\ %j:/\\i/%fm

i=1,m j=1,p; f

where f ranges over functions with domain [m] s.t. Vi € [m],
f(@) € [pi]. This rewriting can increase the size of the expression
exponentially®. Finally, we will often drop 3 and A when clear
from the context, as in the examples in Sec. 1.

A classic result by Sagiv and Yannakakis [12] gives a necessary
and sufficient condition for a logical implication of positive sen-
tences written in DNF: if ® = \/, ¢; and &’ = \/; ¢}, then:

¢ =@ iff Vidjp = ¢ 6))

No analogous property holds for CNF: R(x,a), S(a, z) logically
implies R(z,y), S(y,z) (where a is a constant), but R(x,a) #
R(z,y),S(y, z) and S(a,z) # R(z,y),S(y,z). We show in
Sec. 4 a rewriting technique that enforces such a property.

3Qur algorithm runs in PTIME data complexity; we do not address
the expression complexity in this paper.

2.2 Incidence Algebras

Next, we review the basic notions in incidence algebras follow-
ing Stanley [13]. A finite lattice is a finite ordered set (L, <) where
every two elements u,v € L have a least upper bound » V v and
a greatest lower bound u A v, usually called join and meet. Since
it is finite, it has a minimum and a maximum element, denoted
0,1. We denote L = L — {1} (departing from [13], where L
denotes I — {0,1}). L is a meet-semilattice. R is a finite di-
mensional vector space whose elements are functions f : L —-R.
Denote (ew), . the canonical basis: e,(u) = 1, ew(v) = 0 for
v # u. The incidence algebra I (L) is the algebra* of linear func-
tions ¢ : RL — RY that satisfy: forall u € L, t(e,) belongs to
the subspace generated by {e, | u < v}; multiplication in I(L)
is defined by function composition. Equivalently, I (ﬁ) consists of
all |L| x |L| matrices (@uv)y vei Where the only non-zero ele-
ments are for u < v, and multiplication is matrix multiplication. In
this paper, all we need are two elements of the incidence algebra:
¢ € I(L), defined as {(u,v) = 1 forall u < v; and its inverse, the
Mobius function g : {(u,v) | u,v € L,u < v} — Z, defined by:

Uﬁ(uvu) =1
ppluo) = — > pp(w,v)

wiu<w<v

We drop the subscript and write ; when L is clear from the context.

The Mobius inversion formula, which is the key piece of our
algorithm, expresses the fact that if g = ((f), then f = u(g).
Namely: if a function g is defined as g(v) = > ., f(u), then

flv) =220, plu, v)g(w).

2.3 Their Connection
A labeled lattice is a triple L = (L, <, \) where (L, <) is a lat-

tice and \ assigns to each element in u € La positive FO sentence
Alw) s.t. A(u) = A(v) iff u = v.

DEFINITION 2.1. A D-lattice is a labeled lattice 1. where, forall
u # 1, A(u) is conjunctive, forall u, v, A(u Av) is logically equiv-
alent to M(u) A \(v), and \(1) = Vauci Alw).

A C-lattice is a labeled lattice L. where, forall u # i, A(u) is
disjunctive, forall u,v, A(u A v) is logically equivalent to A(u) V
A(v), and /\(i) = Auci Au).

In a D-lattice, u < v iff A(u) = A(v). This is because A(u) =
A(u A v) is logically equivalent to A(u) A A(v). Similarly, in a
C-lattice, u < v iff A(v) = A(u). If L is a D- or C-lattice, we say
L represents ® = A(1).

PROPOSITION 2.2
Fix a probabilistic structure (A, P) and a positive sentence ®; de-

note Pa as P. Let 1. be either a D-lattice or a C-lattice represent-
ing ®. Then:

P@)=P(1) = =D plv,HPA@) ©)

v<i

PROOF. The proof for the D-lattice is from [13]. Denote f(u) =
P(Au) A=(V, <y A(v))). Then:

W)=Y f) = fl)=7 u,u)PA(@))

v<u v<u

*An algebra is a vector space plus a multiplication operation [13].

(INVERSION FORMULA FOR POSITIVE FO).

/I\

Y1 P3 i
yaN /\
P13 P2, 03 P4 P55
N/ \/
0=1,02,03 0=wpsVes
(a) (b)

Figure 1: The D-lattice (a) and the C-lattice (b) for ¢ (Ex. 2.3).

The claim follows by setting « = 1 and noting f 1) =o. For a
C-lattice, write \'(u) = —A(u). Then P(A\(1)) = 1-P(N'(1)) =
1+, .1 1(v, 1)P(X (v)) and the claim follows from the fact that

Zveﬁ wu(v, i) =0. O

The proposition generalizes the well known inclusion/exclusion
formula (for D-lattices), and its less well known dual (for C-lattices):

P(aVvbVc)=P(a)+ P(b) + P(c)
—P(anb)—PlaNc)—PbAc)+PlanbAc)

P(aAbAc)= P(a)+ P(b) + P(c)
—P(aVvb)—P(aVec)—P(bVe)+PlavbVe)

We show how to construct a canonical D-lattice, Lp(®) that
represents a positive sentence ®. Start from the DNF in Eq.(3), and
for each subset s C [m] denote ps = A, i. Let L be the set of
these conjunctive sentences, up to logical equivalence, and ordered
by loglcal 1mphcat10n (hence, |L| < 2™). Label each element
u € L, u # 1 with its corresponding Ps (choose any, if there
are multiple equivalent ones), and label 1 with \/Sﬂ ps (= D).

We denote the resulting D-lattice L p (®). Similarly, Lo (®) is the
C-lattice that represents ®, obtained from the CNF of ® in Eq.(4),
setting ¢, = \/, ., ¥i-

In summary, the first main technique of our algorithm is this.
Given @, compute its C-lattice, then use Eq.(6) to compute P(P);
we explain later why we use the C-lattice instead of the D-lattice.
This reduces the problem to that of computing the probability of
disjunctive setnences P(A\(u)): we show in the next section how
to compute the latter. The power of this technique comes from
the fact that, whenever (u, 1) = 0, then we do not need to com-
pute the corresponding P(A(u)). As we explain in Sec. 6 this is
strictly more powerful that the current techniques used in proba-
bilistic inference, which are based on conditioning, independence,
and disjointness.

Example 2.3 Consider the following positive sentence:

R(z1), S(z1,31) V S(z2,y2), T(y2) V R(z3), T (y3)
= p1Ve2 Vs

P

The Hasse diagram of the D-lattice L p (®) is shown in Fig. 1 (a).
There are eight subsets s C [3], but only seven up to logical equiv-
alence, because’ ©1, P2 = @1, P2, 3. The values of the Mobius
function are, from top to bottom: 1, —1, —1,—1,1, 1,0, hence the
inversion formula is:

P(®) = P(p1)+ P(p2) + P(ps) — P(p1p3) — P(p203)

>There exists a homomorphism @1, @a, 3 — @1, P2 that maps
R(z3) to R(z1) and T'(y3) to T'(y2).

The Hasse diagram of the C-lattice Lo (®) is shown in Fig. 1
(b). To see this, first express ® in CNF:
(R(z1), S(@1,91) V S(x2,92), T(y2) V R(xs)) A
(R(z4), S(xa,ya) vV S(xs,y5), T'(ys) V T(ys))
(R(x3) V S(2,2), T (y2)) A (R(24), S(wa,ya) V T(ys))
= palAps

i}

I
R

Note that 0 is labeled with 4 Vs = R(x3)VT (ys). The inversion
formula here is:

P(®) = P(pa)+ P(ps) — P(paV gs)

where w4 V 5 = R(z3) V T (ys).

In general, there may be many lattices that represent the same
positive sentence ®. For example, consider any two conjunctive
sentences S.t. 2 = 1, then 1 and o1 V2 are equivalent positive
sentences, yet their canonical D-lattices differ. One expects the
algorithm to be invariant to equivalent expressions. We show this
formally next. An element w in a lattice covers v if u > v and
there is no w s.t. w > w > v. An atom® is an element that covers
0; a co-atom is an element covered by 1. An element w is called
co-atomic if it is a meet of coatoms. Let Lo denote the set of co-
atomic elements: Lo is a meet semilattice, and Lo = Lo U {i}isa
lattice. We prove the following in the Appendix:

PROPOSITION 2.4. (1) Ifu € L and p;(u,1) # 0 then u is
co-atomic. (2) Forall uw € Lo, p; (u, i) =pj, (u, i).

Let L and L’ be D-lattices representing the sentences ® and @',
If ® = @', then L and L’ have the same co-atoms, up to logical
equivalence. Indeed, we can write ® as the disjunction of co-atom
labels in L, and one co-atom cannot imply another. Thus, by apply-
ing Eq.(5) in both directions, we get a one-to-one correspondence
between the co-atoms of L and I/, indicating logical equivalence.
It follows from Prop. 2.4 that, when D-lattices represent equivalent
formulas, the set of labels A(u) where u(u, 1) # 0 are equivalent.
Thus, an algorithm that inspects only these labels is independent of
the particular representation of a sentence.

A similar property does not hold for C-lattices, because Eq.(5)
does not extend to CNF. For example, ® = R(z,a), S(a, z) and
&' = R(z,a),S(a,z), R(z',y"),S(y,2") are logically equiva-
lent, but have different co-atoms. The co-atoms of ® are R(x,a)
and S(a, z) (the C-lattice is V-shaped, as in Fig. 1 (b)), and the co-
atoms of ® are R(z,a), (R(z',vy"), Sy, 2")), and S(a, 2) (the
C-lattice is W-shaped, as in Fig. 1 (a)). However, we prove in
Sec. 4.2 that over ranked structures, C-lattices representing equiva-
lent formulas have the same sets of co-atoms.

3. INDEPENDENCE AND SEPARATORS

Next, we show how to compute the probability of a disjunctive
sentence \/ ; 7Vis this is the second technique used in our algorithm,
and consists of eliminating, simultaneously, one existential variable
from each ~;, by exploiting independence.

Let ¢ be a conjunctive sentence. A valuation h is a substitution
of its variables with constants; h(y), is a set of ground tuples. We
call two conjunctive sentences @1, 2 tuple-independent if for all
valuations h1, h2, we have hi(p1) N ha(p2) = 0. Two positive
sentences ®, ®' are tuple-independent if, after expressing them in
DNE @ =/, ¢;, ®' = \/j ¢, all pairs ¢, ¢} are independent.

®Not to be confused with a relational atom 7; in (2).

Let ®4,...,®,, be positive sentences s.t. any two are tuple-

independent. Then:
r\/®:) = 1-JJ(1-P(@))

This is because the m lineage expressions for ®; depend on dis-
joint sets of Boolean variables, and therefore they are independent
probabilistic events. In other words, tuple-independence is a suf-
ficient condition for independence in the probabilistic sense. Al-
though it is only a sufficient condition, we will abbreviate tuple-
independence with independence in this section.

Let ¢ be a positive sentence, V = {z1,...,zm} C Vars(p),
and a a constant. Denote p[a/V] = ¢la/z1,...,a/zm] (all vari-
ables in V' are substituted with a).

DEFINITION 3.1. Let ¢ = \/,_, , 7 be a disjunctive sen-

tence. A separator is a set of variables V. = {z1,...,Zm}, x; €
Var(vi), such that forall a # b, pla/V], p[b/V] are independent.

PROPOSITION 3.2. Let @ be a disjunctive sentence with a sep-
arator V, and (A, P) a probabilistic structure with active domain
D. Then:

Plp) = 1-]]1~P(ela/V]) @)

a€D

The claim follows from the fact that ¢ = \/ ., w[a/V] on all
structures whose active domain is included in D.

In summary, to compute the probability of a disjunctive sentence,
we find a separator, then apply Eq.(7): each expression p[a/V]is a
positive sentence, simpler than the original one (it has strictly fewer
variables in each atom) and we apply again the inversion formula.
This technique, by itself, is not complete: we need to “rank” the re-
lations in order to make it complete, as we show in the next section.
Before that, we illustrate with an example.

Example 3.3 Consider ¢ = R(x1), S(x1,y1)VS(z2,y2), T (z2).
Here {z1, z2} is a separator. To see this, note that for any constants
a # b, the sentences p[a] = R(a), S(a,y1) V S(a,y2),T(a) and
pb] = R(b),S(b,y1) V S(b,y2), T (b) are independent, because
the former only looks at tuples that start with a, while the latter
only looks at tuples that start with b.

Consider ¢ = R(z1),S(z1,y1) V S(x2,y2), T(y2). This sen-
tence has no separator. For example, {z1, 22} is not a separator
because both sentences ¢[a] and ¢[b] have the atom T'(y2) in com-
mon: if two homomorphisms h1, ho map y2 to some constant c,
then T'(c) € hi(yp[a]) N ha2(¢p[b]), hence they are dependent. The
set {x1,y2} is also not a separator, because ¢[a] contains the atom
S(a,y1), [b] contains the atom S(z2,b), and these two can be
mapped to the common ground tuple S(a, b).

We end with a necessary condition for V' to be a separator.

DEFINITION 3.4. If v is a component, a variable of vy is called
a root variable if it occurs in all atoms of .

Note that components do not necessarily have root variables,
e.g., R(z), S(z,y), T(y). We have:

PROPOSITION 3.5. IfV is a separator of \/, i, then each sep-
arator variable ©; € Vars(v:) is a root variable for ;.

The claim follows from the fact that, if r is any atom in ¢; that does
not contain z;: then r is unchanged in ~y;[a] and in ; [b], hence they
are not independent.

4. RANKING

In this section, we define a simple restriction on all formulas and
structures that simplify our later analysis: we require that, in each
relation, the attributes are strictly ordered A1 < As < ... We
show how to alter any positive sentence and probabilistic structure
to satisfy these constraints, without changing the sentence proba-
bility. This is a necessary preprocessing step for our algorithm to
work, and a very convenient technique in the proofs.

4.1 Ranked Structures

Let C be a fixed set of constants: later we will choose C to be
the set of constants used in a given sentence .

DEFINITION 4.1. A relation R is ranked w.r.t. C' if every tuple
R(a,...,ax) is such that ay < --- < ap and a; & C, fori =
1, k. A probabilistic structure is ranked w.r.t. C if all its relations
are ranked.

To motivate ranked structures, we observe that the techniques
given in previous sections do not directly lead to a complete algo-
rithm. For example, the sentence v = R(z,y), R(y, z) is con-
nected, so we cannot use Mobius inversion to simplify it. We also
cannot apply Eq.(7) because there is no separator: indeed, {z} is
not a separator because R(a,y), R(y,a) and R(b,y), R(y,b) are
not independent (they share the tuple R(a,b)), and by symmetry
neither is {y}. However, consider a structure with a unary relation
R12 and binary relations R <2, R2<1 defined as:

Ri2 = mx,(0x,=x,(R)) Ra<i = mx,x, (0x,<x, (R))

R1<2 = 0X1<X2 (R)

Here, we use X; to refer to the ¢-th attribute of R. This is a ranked
structure: in both relations R; <2 and Ra<1 the first attribute is less
than the second. Moreover: v = Ri2(z)V Ri<2(,y), Ra<1(x, y)
and now {z, } is a separator, because Ri<2(a,y), R2<1(a,y) and
Ri<2(b,y), Ra<1(b,y) are independent. Thus, Eq.(7) applies to
the formula over the ranked structure, and we can compute the
probability of v in polynomial time.

Once we restrict the structures to be ranked, we will remove all
constants and duplicate variables in the atoms of a sentence; note
that an atom with duplicate variables cannot be satisfied by a ranked
relation, nor can an atom with a constant be satisfied, since we as-
sume that the structure is ranked w.r.t. all the constants that origi-
nally occurred in the sentence.

DEFINITION 4.2. We say a positive sentence is in reduced form
if each atom R(x1, ..., %) is such that each x; is a distinct vari-
able.

‘We now prove that the evaluation of any sentence can be reduced
to an equivalent sentence over a ranked structure, and we further
guarantee that the resulting sentence is in reduced form.

PROPOSITION 4.3. Let ®g be positive sentence and let C' be
the set of constants used in ®g. For any structure Ao, there exists
structure A that is ranked w.rt. C, and a sentence ® in reduced
form, such that Pa,(®o) = Pa(®).

PROOF. Let R(X1,...,X}) be a relation symbol and let p be
a maximal, consistent conjunction of order predicates involving at-
tributes of R and the constants occurring in ®q: for any attributes
or constants y, z, p implies exactly one of y < 2,y = 2,y > 2.
We say X is unbound if p # X; = c for any constant c. We de-
note R” = mg(c,(R)) where X contains one X in each class of
unbound attributes that are equivalent under p, listed in increasing
order according to p.

We show how to rewrite any positive sentence into an equiva-
lent, reduced sentence over ranked structures. We start with a con-
junctive sentence ¢ = 71,...,7r, and let R; denote the relation
symbol of r;. Consider a maximally consistent predicate p; on the
attributes of R;, for each i = 1,n, and let p = p1,..., p, be the
conjunction. We say that p is consistent if there is a valuation h
such that h(p) = p. Given a consistent p, divide the variables
into equivalence classes of variables that p requires to be equal,
and choose one representative variable from each class. Let 7% be
the result of changing R;(z1, ..., zk) to RY*(y1,...,ym), where
Y1, ..., Ym are chosen as follows. Consider the unbound attribute
classes in R;, in increasing order according to p;. Choose y;, to be
the representative of a variable that occurs in the position of an at-
tribute in the p-th class of unbound attributes. This works because
the position of any unbound attribute X must have a variable: if
there is a constant a, then h(r;) = X = a for all valuations h. But
pi = X # aso this contradicts the assumption that p is consistent.
Using a similar argument, we can show that each y; is distinct, so
77" is in reduced form. Furthermore, p = A, r{",... 7" where
the disjunction ranges over all maximal p; such that p is consis-
tent. For a positive sentence ®¢, we apply the above procedure to
each conjunctive sentence in the DNF of @ to yield a sentence in
reduced form on the ranked relations R”. [

Example 4.4 Let ¢ = R(x,a), R(a,z). If we define the ranked
relations R1 = 7x,(0x,=a(R)), R2 = 7x,(0x,=a(R)), and
Ris = mg(0x,=x2=a(R)), we have ¢ = R1(z), R2(x) V Ri2().

Next, consider p = R(z), S(z,z,y), S(u,v, v). Define

Si23 = 7TX1(UX1:X2=X3(S))
Sozc1 = 7TX2X1(UX2=X3<X1((S))

and so on. We can rewrite ¢ as:

¢ = R(=), S123(w)
V R(x), S12<3(x,y), S1<23(u,v) V R(z), S12<3(x,y), S23<1 (v, u)
V R(z), Sz<12(y, ®), S1<23(u,v) V R(z), S3<12(y,), S2a<1(v, u)

and note that these relations are ranked. [

Thus, when computing Pa (®), we may conveniently assume
w.l.o.g. that A is ranked and @ is in reduced form. When we re-
place separator variables with a constant as in Eq.(7), we can easily
restore the formula to reduced form. Given a disjunctive sentence
 in reduced form and a separator V, we remove a from ¢[a/V]
as follows. For each relation R, suppose the separator variables oc-
cur at position X; of R. Then we remove all rows from R where
X # a, reduce the arity of R by removing column ¢, and remove
x; = a from all atoms R(x1,...,zx) in p[a/V].

We end this section with two applications of ranking. The first
shows a homomorphism theorem for CNF sentences.

PROPOSITION 4.5. Assume all structures to be ranked, and all
sentences to be in reduced form.

o If ¢, are conjunctive sentences, and is satisfiable over
ranked structures’ then ¢ = ' iff there exists a homomor-
phism b : @' — .

e Formula (5) holds for positive sentences in DNF.
e The dual of (5) holds for positive sentences in CNF:

Nowi= N\;@; iff Vidigi = ¢

"Meaning: it is satisfied by at least one (ranked) structure.

The proof is in the appendix. The first two items are known to
fail for conjunctive sentences with order predicates: for example
R(z,y), R(y, z) logically implies R(x,y),z < y, but there is no
homomorphism from the latter to the former. They hold for ranked
structures because there is a strict total order on the attributes of
each relation. The last item implies the following. If L and I” are
two C-lattices representing equivalent sentences, then they have the
same co-atoms. In conjunction with Prop. 2.4, this implies that an
algorithm that ignores lattice elements where p(u,1) = 0 does
not depend on the representation of the positive sentence. This
completes our discussion at the end of Sec. 2.

The second result shows how to handle atoms without variables.

PROPOSITION 4.6. Let vo,v1 be components in reduced form
s.t. Var(yo) =0, Var(y1) # 0. Then yo, 71 are independent.

PROOF. Note that o contains a single atom R(); if it had two
atoms then it is not a component. Since ~; is connected, each atom
must have at least one variable, hence it cannot have the same rela-
tion symbol R(). [

Let ¢ = \/~; be a disjunctive sentence, po = Vi:Var(w)=(0 Vi
and @1 = V. 4(,) 20 Vi- It follows that:

P(p) = 1—=(1=P(po))(1—P(e1)) ®)

4.2 Finding a Separator

Assuming structures to be ranked, we give here a necessary and
sufficient condition for a disjunctive sentence in reduced form to
have a separator, which we use both in the algorithm and to prove
hardness for #P. We need some definitions first.

Let o = 71 V...V, be adisjunctive sentence, in reduced form.
Throughout this section we assume that ¢ is minimized: more pre-
cisely each «y; is minimized, and is non-redundant (there is no y;
s.t. 7; = ;). This representation of ¢ is unique up to isomor-
phism. Further assume Var(y;) N Var(y;) = 0 forall i # j
(if not, then rename the variables). Two atoms r € Atoms(v:)
and ' € Atoms(v;) are called unifiable if they have the same
relational symbol. We may also say 7, unify. It is easy to see
that «; and ~y; contain two unifiable atoms iff they are not tuple-
independent. Two variables =, z’ are unifiable if there exist two
unifiable atoms 7, 7" such that = occurs in 7 at the same position
that 2’ occurs in 7’. This relationship is reflexive and symmetric.
We also say that x, ' are recursively unifiable if either x,x’ are
unifiable, or there exists a variable z’’ such that x, 2" and z’, z”’
are recursively unifiable.

A variable x is maximal if it is only recursively unifiable with
root variables. Hence all maximal variables are root variables. The
following are canonical examples of sentences where each compo-
nent has a root variable, but there are no maximal variables:

ho = R(z0), S1(x0,¥0), T (30)
h1 = R(z0), S1(z0,v0) V S1(x1,y1), T(y1)
ha = R(x0), S1(x0,y0) V S1(x1,91), S2(x1,91) V S2(x2,y2), T(y2)

hi, = R(z0), S1(x0,%0) V S1(21,¥1), S2(z1,91) V

VS 1(Th—1,Yk—1), Sk (-1, Yk—1) V (Sk(Tk, y&), T(yx)

In each Ay the root variables are x; 1, y; for: = 1, k—1, and there
are no maximal variables.

Maximality propagates during unification: if is maximal and
z, 2" unify, then &’ must be maximal because otherwise x would
recursively unify with a non-root variable.

Let W; be the set of maximal variables occurring in ~;. If an
atom in 7; unifies with an atom in ~y;, then |W;| = |W;| because
the two atoms contain all maximal variables in each component,

Algorithm 5.1 Algorithm for Computing P (®)
Input : Positive sentence ® in reduced form;
Ranked structure (A, p) with active domain D
Output: P(®)
1: Function MobiusStep(®) /* & = positive sentence */
2: LetL =Lo(®)bea C-lattice representing
3: Return) iy (u, 1)xIndepStep(A(u))
4: O
5: Function IndepStep(y) /* ¢ = \/, vi */
6:
7
8
9

Remove redundant ;’s, i.e. for which 35 # i s.t. v; = ~;
Minimize each component ;.
Let p = @0 V 1
where: $o = Vi:Var(’y,;):@ Yis P1 = Vi:Va'r(’yi);ﬁ@ Vi
10: Let V = a separator for ¢ (Sec. 4.2)
11: If (no separator exists) then FAIL (UNSAFE)
12: Let Po = P((po)
13: Letpr =1 —[],cp(1 — MobiusStep(¢1[a/V]))
14: /* Note: assume 1[a/V] is reduced (Sec.4) */
15: Return1 — (1 —po)(1 — p1).
16: O

and maximality propagates through unification. Since the struc-
tures are ranked, for every ¢ there exists a total order on the max-
imal variables in W;: z;1 < x;2 < ... The rank of a variable
x € W is the position where it occurs in this order. The following
result gives us a means to find a separator if it exists:

PROPOSITION 4.7. A disjunctive sentence has a separator iff
every component has a maximal variable. In that case, the set com-
prising maximal variables with rank 1 forms a separator.

PROOF. Consider the disjunctive sentence ¢ = \/", 7; and set
of variables V. = {z1,...,zm} st. &y € Vars(y), i = 1,m.
It is straightforward to show that V' is a separator iff any pair of
unifiable atoms have a member of V' in the same position. Hence,
if V' is a separator, then each x; € V can only (recursively) unify
with another z; € V. Since x; is a root variable (Prop. 3.5), each
z; € Vars(v;) is maximal, as desired.

Now suppose every component has a maximal variable. Choose
V such that x; is the maximal variable in ~; with rank 1. If two
atoms 7,7’ unify, then they have maximal variables occurring in
the same positions. In particular, the first maximal variable has
rank 1, and thus is in V. We conclude that V' is a separator. []

For a trivial illustration of this result, consider the disjunctive
sentence R(z,y), S(z,y) vV S(z',y"), T(z',y’). All variables are
root variables, and the sets of maximal variables are W1 = {z, y},
Wa = {a',y’}. We break the tie by using the ranking: choosing
arbitrarily rank 1, we obtain the separator {z,z'}. (Rank 2 would
gives us the separator {y,y'}). A more interesting example is:

Example 4.8 In ¢, not all root variables are maximal:
R(Zl7 $1)7 S(Zl7x1a yl) N S(z27 x2, y2)7 T(Z27 y2) 4
R(z3,3),T(23,y3)

The root variables are z1, x1, 22, Y2, z3. The sets of maximal vari-
ables in each component are W1 = {z1}, Wa = {22}, W3 =
{23}, and the set {21, 22, 23} is a separator.

S. THE ALGORITHM

Algorithm 5.1 takes as input a ranked probabilistic structure A
and a positive sentence ® in reduced form, and computes the prob-
ability P(®), or fails. The algorithm proceeds recursively on the

@ =

structure of the sentence ®. The first step applies the Mobius in-
version formula Eq.(6) to the C-lattice for @, expressing P(®P) as a
sum of several P(y), where each ¢ is a disjunctive sentence. Skip-
ping those ¢’s where the Mobius function is zero, for all others
it proceeds with the second step. Here, the algorithm first “mini-
mizes” o, by removing redundant components and by minimizing
all remaining components. A component +y; is redundant if there
exists another component s.t. y; = <y;. Minimizing 7; means re-
placing it with a smallest subset of its atoms, ;, s.t. there exists a
homomorphism ~; — ~; (7 is sometimes called the core of ;).
Finally, compute P(\/~;), by using Eq.(8), and Eq.(7). For the
latter, the algorithm needs to find a separator first, as described in
Sec. 4.2: if none exists, then the algorithm fails.

The expression P(pq) represents the base case of the algorithm:
this is when the recursion stops, when all variables have been sub-
stituted with constants from the structure A. Notice that (g is of
the form \/ r;, where each r; is a ground atom. Its probability is
1 —TI,(1 = P(r:)), where P is the probability function of the
probabilistic structure (A, P).

We will now define safe sentences ®, on which the algorithm
always succeeds, and for that we need some definitions. Let ¢ be
a disjunctive sentence. A level is a non-empty set of variables® W
such that every atom in ¢ contains at most one variable in W and
for any unifiable variables =, z’, if x € W then 2’ € W. Note
that, in particular, any separator is a level. For a variable x € W,
let n, be the number of atoms that contain x; let n = max, ng.
Let A = {ai1,...,ax} be a set of constants not occurring in ¢
s.t. k < n. Denote ¢[A/W] the sentence obtained as follows:
substitute each variable x € W with some constant a; € A and
take the union of all such substitutions:

pla/wl = \/ olf]

O:W—A

Note that ¢[A /W] is not necessarily a disjunctive sentence, since
some components -; may become disconnected in [A/W].

DEFINITION 5.1. Define the following rewrite rule ® — ®¢ on
positive sentences. Below, o, po, @1, denote disjunctive sentences:

o — @lA/W] Wisalevel, Aisa set of constants
woVer — @1 if Vars(po) =0
® — o Ju € Le(D).u(u, 1) # 0,0 = A(u)

The second and third rules are called simple rules. The first rule is
also simple if W is a separator and |A| = 1.

The first rewrite rule allows us to substitute variables with con-
stants; the second to get rid of disjuncts without any variables; the
last rule allows us to replace a CNF sentence ¢ with one element
of its C-lattice, provided its Mobius value is non-zero.

DEFINITION 5.2. A positive sentence ® is called unsafe if there

exists a sequence of simple rewritings ® > s.t. @ is a disjunctive
sentence without separators. Otherwise it is called safe.

Let @ be an FO sentence. The weak counting problem for ® is
the following. Given a structure A and a substructure A, compute
the number of structures B s.t. Ag C B C A and B = ®. Equiv-
alently, compute P(®) on the probabilistic structure A where all
tuples in Ao have probability 1 and all other tuples have probability
1/2. The main result in this paper is:

THEOREM 5.3 (SOUNDNESS AND COMPLETENESS). Fixa pos-

itive sentence .

$No connection to the maximal sets W; in Sec. 4.2.

Soundness If ® is safe then, for any probabilistic structure, Algo-
rithm 5.1 terminates successfully (i.e. doesn’t fail), computes
correctly P(®), and runs in time O(n"), where n is the size
of the active domain in the structure, and k the largest arity
of any symbol in the vocabulary.

Completeness If ® is unsafe then the weak counting problem for
® is hard for #P.

Soundness follows immediately, by induction: if the algorithms
starts with @, then for any sentence ®o processed recursively, it
is the case that ® = ®g, where all rewrites are simple. Thus, if
the algorithm ever gets stuck, ¢ is unsafe. The complexity follows
from the fact that each recursive step of the algorithm removes one
variable from every atom, and traverses the domain D once, at a
cost O(n). We discuss completeness in Sec. 5.2.

Example 5.4 Let ® = R(z1),S(z1,y1) V S(z2,92),T(y2) V
R(z3),T(y3). This example is interesting because the subexpres-
sion R(z1), S(z1,y1)V S(z2,y2), T(y2) is #P-hard (it has no sep-
arator), but the entire sentence is in PTIME. The algorithm com-
putes the C-lattice, shown in Fig. 1 (b), then expresses P(®) =
P(p4) + P(ps) — P(ps) where g = R(x) V T'(y) (see Exam-
ple 2.3 for notations). Next, the algorithm applies the indepen-
dence step to each of w4, @5, we; we illustrate here for s =
R(z3) V S(z2,y2), T (y2) only; the other expressions are similar.
Here, {x3,y2} is a set of separator variables, hence:

P(ps) = 1-][]~ P(R(a)V S(z2,a),T(a)))

acA

Next, we apply the algorithm recursively on R(a)VS(z2, a),T(a).
In CNF it becomes’ (R(a)V.S(z2,a))(R(a)VT(a)), and the algo-
rithm returns P(R(a)V S(z2,a))+ P(R(a)VT(a)) — P(R(a) V
S(z2,a) V T'(a)). Consider the last of the three expressions (the
other two are similar): its probability is

1— (1 P(R(a) VT()) [T(1 = P(S(b,a)))
beA

Now we have finally reached the base case, were we compute the
probabilities of sentences without variables: P(R(a) V T'(a)) =
1—(1—P(R(a)))(1 — P(T(a))), and similarly for the others.

Example 5.5 Consider the sentence ¢ in Example 4.8. Since this
is already CNF (it is a disjunctive sentence), the algorithm proceeds
directly to the second step. The separator is V' = {z1, 22, 23} (see
Ex. 4.8), and therefore:

Plp) = 1-] - P(ela/v])
acA
where ¢[a/V] is:
R(a,z1),S(a,z1,y1)VS(a, z2,y2), T (a,y2)VR(a, z3), T (a,ys3)
After reducing the sentence (i.e. removing the constnat a), it be-

comes identical to Example 5.4.

5.1 Discussion

We justify here two major choices we made in the algorithm:
using the C-lattice instead of the D-lattice, and relying on the in-
version formula with the Mobius function instead of some simpler
method to eliminate unsafe subexpressions.

?Strictly speaking, we would have had to rewrite the sentence into
a reduce form first, by rewriting S(z2, a) into Sa<q (22), etc.

To see the need for the C-lattice, let’s examine a possible dual
algorithm, which applies the Mobius step to the D-lattice. Such an
algorithm fails on Ex. 4.8, because here the D-lattice is 213] , and the
Mobius function is +1 or —1 for every element of the lattice. The
lattice contains R(z1,21),S(21, 21, 41), 5(22, 22, y2), T (22,y2),
which is unsafe'®. Thus, the dual algorithm fails.

To see the need of the Mobius inversion, we prove that an exis-
tential, positive FO sentence can be “as hard as any lattice”.

THEOREM 5.6 (REPRESENTATION THEOREM). Let (L, <) be
any lattice. There exists a positive sentence ® such that: Lp(®) =
(L, <, \), M(0) is unsafe, and forall u # 0, M(u) is safe. The dual
statement holds for the C-lattice.

PROOF. Call an element » € L join irreducible if whenever
v1 V v2 = r, then either vi = r or vo = r. (Every atom is
join irreducible, but the converse is not true in general.) Let R =
{ro,71,..., 7} be all join irreducible elements in L. For every
u € Ldenote R, = {r | r € R,r < u}, and note that R,s, =
R, U R, Define the following components'':

Yo = R(z1),S1(%1,91)
v = Si(Tit1,Yi41), Sit1(@ig1,yit1) i =Lk -1
Y = Sk(@k,yk), T(yx)

Consider the sentences ® and ¥ below:

o=V A T=A Vs

u<iTi€Ry u<iri€Ry
Then both Lp(®) and L¢ () satisfy the theorem. [

Thus, any complete PTIME algorithm must decide whether or not
to compute A(0), which amounts to deciding whether (0, 1) = 0.

5.2 Outline of the Completeness Proof

In this section we give an outline of the completeness proof and
defer details to the Appendix.

THEOREM 5.7. Suppose ® is unsafe. Then there exists a rewrit-
ing ® = @ s.t. (a) @ has no separators, and (b) there exists a
PTIME algorithm for evaluating Pa () on probabilistic structure
A, with a single access to an oracle for computing Pg(®P).

By definition, ® is unsafe if there exists ® — ¢ for some sen-
tence ¢ without separators. The theorem applies only to some
rewriting, namely to those where all lattice rewritings & — ¢ (third
in Def. 5.1) are such that ¢ is a maximal unsafe element in the lat-
tice.

Thus, the evaluation problem for ¢ can be reduced to that of ®:
in order to prove that unsafe setnences are hard, it suffices to prove
that sentence without separators are hard. For that, we will further
apply the rewrite rules, until every atom has at most two variables.
But we may get stuck because we may be unable to find a level, as
illustrated by:

R(z,y),S(y,2) V R(z',y"), S(z',y")

If we list Vars(p) as z, 2, y,y', 2, each consecutive pair of vari-
ables is unifiable. This indicates that no level exists: if there were a
level W, then W would need to include at least one variable, which
implies that W contains all variables due to the unifications. This

(’0:

Tt rewrites to R(a, 1), S§a,x1,y1§, ngl’myz),T(a’ Yy2) —
R(a,z1), S(a,z1,y1) V S(a, z2,y2),T(a, y2).
"That is, \ v = hg.

contradicts the requirement that an atom may contain at most one
variable in a level. While this sentence already has only two vari-
ables per atom, it illustrates where we may get stuck in trying to
apply a rewriting.

To circumvent this, we transform the sentence as follows. Let
V = Vars(p). Aleveling is afunction! : V' — [L], where L > 0,
s.t. forall 4 € [L], 1~'(i) is a level. Conceptually, [partitions the
variables into levels, and assigns an integer to each level. This, in
turn, associates exactly one level to each relation attribute, since
unifiable variables must be in the same level. We also refer to the
pair @, [as a leveled sentence.

Call a structure A leveled if there exists a function [: A —
[L] s.t. all constants that appear in a given relation attribute have
the same level. This means that attributes associated with different
levels cannot have any values in common. If one thinks of the
structure A as a sentence by treating each constant as a variable and
each tuple as an atom, then the structure is leveled iff the associated
sentence is leveled.

PROPOSITION 5.8. Let o be a disjunctive sentence that has no
separators. Then there exists L > 0 and a leveled sentence o s.t.
that o™ has no separator and the evaluation problem of ™ over
L-leveled structures can be reduced in PTIME to the evaluation
problem of p.

The proof is in the Appendix. We illustrate the main idea on
the example above. We choose L = 4 and the leveled sentence ¢
becomes:

L

¢~ = Roas(x2,y3),534(y3, usa) V Ri2(z1,y2), S23(y2, 23) V

Rzg(l‘,g, yé)7 523($l27 y;)

Note that ¢ still does not have a separator. We claim that ¢
and @ are equivalent over 4-leveled probabilistic structures: thus,
hardness of o on 4-leveled structures implies hardness of . We
only need to apply the leveling construct once: if ¢ is leveled, if
rewrite it as ¢ — ¢’ then ¢’ is also leveled. We prove:

THEOREM 5.9. Suppose ¢ is leveled, and has no separator.

Then there exists a rewriting ¢ — @' s.t. ¢’ has no separator
and every atom in ¢’ has at most two variables.

We prove this result in the appendix. Note that here we must
be allowed to use non-simple rewritings ¢ — @[A/W], where W
is not a separator (of course) and A has more than one constant.
We show in the appendix examples were the theorem fails if one
restricts A to have size 1.

Once we reach a sentence with at most two variables in each
atom, completeness of the algorithm follows from the following
result:

THEOREM 5.10. Suppose @ at most two variables in each atom,
and is leveled. If p has no separator, then the weak counting prob-
lem for @ is hard for #P, even when the input structures are re-
stricted to leveled structures.

6. AN ALGORITHM USING CONDITION-
ALS AND DISJOINTNESS

Conditioning and disjointness are two important techniques in
probabilistic inference. The first expresses the probability of some
Booelan expression ® as P(®) = P(® | X)*xP(X) + P(® |
—X)#*(1 — P(X)) where X is a Boolean variable. This basic tech-
nique can be applied to a variety of settings, going beyond proba-
bilistic inference, for example in order to construct a Binary Deci-
sion Diagram [14], one of the most powerful techniques in model

checking. Olteanu [10] has shown recently that BDDs can be de-
rived for any safe conjunctive sentence without selfjoins. A second
popular technique is disjoitness: if ® and ¥ are exclusive proba-
bilistic events, then P(® Vv V) = P(®) + P(T).

We give an algorithm for evaluating a sentences ® over proba-
bilistic structures, that replaces the Mobius step of Algorithm 5.1
with a sequence of conditioning and disjointness steps. Condition-
ing is on an entire sentence ¢, as opposed to a single Boolean vari-
able. When the algorithm succeeds, it runs in PTIME in the size
of the probabilistic structure. However, we also show that the algo-
rithm is incomplete; in fact, we claim that no algorithm based on
these two techniques only can be complete.

The problem we address is the following. Given ® = \/ ¢;,
compute P(®) in a sequence of conditioning/disjointness steps,
without using Mobius’ inversion formula. The second step of Al-
gorithm 5.1 (existential quantification based on independence) re-
mains the same and is not repeated here. For reasons discussed
earlier, that step requires that we have a CNF representation of
the sentence, ¥ = A ¢;, but both conditioning and disjointness
operate on disjunctions. We use De Morgan’s laws P(/A ¢;) =
1 — P(\ —i). Thus, we some abuse of terminology we assume
that our input is a D-lattice, although its elements are labeled with
negations of disjunctive sentences.

We illustrate first with an example

Example 6.1 Consider the sentence in Example 5.4:

® = R(21),S(x1,y1) V S(22,92), T(y2) V R(w3), T (y3)
= p1Ve2 Vs

We illustrate here directly on the DNF lattice, without using the
negation. (This works in our simple example, but in general one
must start from the CNF, then negate.) The Hasse diagram of the
DNF lattice is shown in Fig. 1. First, let’s revisit Mobius’ inversion
formula:

P(®) = P(p1) + Pp2) + Pps) — P(prps) — Pp23)

The only unsafe sentence in the lattice is the bottom element of the
lattice, where (1 and 2 occur together, but that disappears from
the sum because u(ﬁ, i) = 0. We show how to compute ® by
conditioning on ¢3. We denote ¢ = - for a formula :

P(®) = P(ps) +P((1V p2) A @s)
= P(ps) + P((p1,93) V (92, $3))
= P(p3) + P(p1,P3) + P(p2, P3)
= P(ps) + (P(p1) — Ple1,93)) + (P(p2) — Plg2, ¢3

The expansion based on conditioning on (3 is given in the third
line. Notice that, given that (3 is false, the events ¢i1 and @2
become mutually exclusive: the third line applies the disjointness
principle. We expand one more step, in order to complete the com-
putation of the probability: this is the fourth line above. This last
expansion may be replaced with a different usage, e.g. the con-
struction of a BDD, not addressed in this paper.
Consider what would happen if we conditioned on ¢ instead:

P(®@) = P(p1) + P((p2V g3) A p1)
= P(p1) + P(p2 A @1) + P(ps A ¢1)
Now we are stuck, because the expression 2 A @1 is #P hard.
Algorithm 6.1 computes the probability of a DNF formula using
conditionals and disjointness. The algorithm operates on a DNF

lattice (which, recall, may represent the negation of a CNF sen-
tence). The algorithm starts by minimizing the expression \/, ¢;:

remove all sentences ¢; for which there exists j # i s.t. ¢; = ;.
We have seen in Prop 2.4 that this corresponds to removing all el-
ements that are not co-atomic from the DNF lattice L. Recall that
(D = Vu<i)\(u)

Next, the algorithm chooses a particular sublattice F, called the
eraser lattice, and conditions on the disjunction of all sentences in
the lattice. We define E below: first we show how to use it. Denote
U1, ..., uy the minimal elements of L — . For any subset S C L,
denote @5 =/, ¢, i A(w); in particular, &1, = ®.

The conditioning and the disjointness rules give us:

P(®L) = P(®g)+ P(@r—g A (—PE))
= P(®gp)+ Z (P, N (—PE))

We have used here the fact that, for ¢ # 7, the sentences ®,,. 7, and
CD[,uj i) are disjoint given ~® g. Finally, we do this:

P(®,, yNEPE) = PP, 1) — PP, ijae)

where [u;, 1| A E = {uAv|u>u,veFE—{1}}

This completes the high level description of the algorithm. We
show now how to choose the eraser lattice, then discuss why the
algorithm is incomplete.

6.1 Computing the Eraser Lattice

Fix a lattice (L, <). The set of zero elements, Z, and the set of
z-atoms Z A are defined as follows:

Z = {2]pe(z1) =0}
ZA = {a| acoverssome element z € Z}

The algorithm reduces the problem of computing P(®r,) for the
entire lattice L to computing P(® i) for three kinds of sub-lattices
K: E, [ui, 1) A E, and [u;, 1]. The goal is to choose E to avoid
computing unsafe sentences. We assume the worse: that every zero
element z € Z is unsafe (if a non-zero element is unsafe then the
sentence is hard). So our goal is: choose E s.t. for any sub-lattice
K above, if z is a zero element and z € K, then px(z,1) = 0.
That is, we can’t necessarily remove the zeros in one conditioning
step, but if we ensure that they continue to be zeroes, so they will
eventually be eliminated.

The join closure of a subset S C L is defined as cl(S) =
{Vyesu | s € S}. Note that 0 € cl(S). The join closure is a

) join-semilattice and is made into a lattice by adding 1 and defining

uAv=V{w|wedS),w<uw< v}
DEFIN}TION 6.2. Let L be a lattice. The eraser lattice E C L
isE={1}Uc(ZUZA).

The following three propositions, proved in the appendix, show
that E has our required properties.

PROPOSITION 6.3. Ifu € Landw € [u, 1] then iy, 1;(u, 1) =
pr(u,1).

PROPOSITION 6.4. Forall z € Z, pg(z,1) = 0.

PROPOSITION 6.5. Assume O € Z. Then, for every zero ele-
ment z € L and for every w € L — E we have p (2, w) = 0.

Example 6.6 Consider Example 6.1. The eraser lattice for Fig. 1
(a) is the join closure of {0, (¢1, ©3), (s, Y2)} and consists of this
set, plus 3 and 1. Notice that this set is not co-atomic: in other
words, when viewed as a sentence, it minimizes to ¢s3.

®1 N
P1,P2 P1,¥3 9927803

~\/

0= 1,p2,p3, P4

7 = R(z1), S1(21,91) Y1 ="3,7

= S1(@2,y2), S2(z2,y2) P2 = Y2,74
v3 = Sa(x3,y3), S3(x3,ys3) 03 = 71,74
va = S3(w4,y4), T(ya) P4 =V1,72,73

Figure 2: A lattice where 1(0,1) = 0, yet is both atomic and
co-atomic: there is no eraser here. This lattice corresponds to
the D-lattice of concrete sentence given by Th. 5.6: ® = ¢, Vv
w2 V @3 V ps. Compare to hs in Sec. 4.2.

To get a better intuition on how conditioning works from a lattice-
theoretic perspective, consider the case when Z = {0}. In this
case Z A is the set of atoms, and F is simply the set of all atomic
elements; usually this is a strict subset of L, and conditioning parti-
tions the lattice into E, [u;, 1] A E, and [u1, 1]. When processing F¥
recursively, the algorithm retains only co-atomic elements. Thus,
conditioning works by repeatedly removing elements that are not
atomic, then elements that are not co-atomic, until 0 is removed,
in which case we have removed the unsafe sentence and we can
proceed arbitrarily.

6.2 Incompleteness

Conditioning corresponds to repeatedly trimming the lattice to
the atomic-, then to the co-atomic-elements, until 0 is removed.
Proposition 2.4 implies that, if 0 is eventually removed this way,
then 12(0, 1) = 0. But does the converse hold ?

The answer is “no”, as shown by the lattice in Fig.2. Here u(@, i)
0, yet the lattice is both atomic and co-atomic. When computing the
eraser F/, one gets the entire lattice £ = L, because every element
is a join of all atoms. Removing elements that are not co-atomic
doesn’t help either: all elements are co-atomic.

To make the example more concrete, recall from Th. 5.6 that
there exists a sentence ® that generates this lattice, where all ele-
ments are safe, except for 0 which is unsafe: the sentence is shown
in the Figure. Thus, we have an example of a sentence that is in
PTIME (simply use Mobius’ inversion formula), yet we cannot
make any progress on it by applying conditioning or disjointness.
Note that Algorithm 5.1 will first rewrite ¢ into CNF, which hap-
pens to be a lattice isomorphic to that in Fig. 2.

7. CONCLUSIONS

We have proposed a simple, but quite non-obvious algorithm for
computing the probability of an existential, positive sentence over a
probabilistic structure. For every safe sentence, the algorithm runs
in PTIME in the size of the input structure; every unsafe sentence
is hard. Our algorithm relies in a critical way on Mobius’ inversion
formula, which allows it to avoid attempting to compute the prob-
ability of sub-sentences that are hard. We have also discussed the
limitations of an alternative approach to computing probabilities,
based on conditioning and independence.

Acknowledgments We thank Chrisoph Koch and Paul Beame
for pointing us (independently) to incidence algebras.

Algorithm 6.1 Compute the probability of ® using conditionals
and disjointness

Input' ¢ = Vizl,m Pi, L= LDNF((I))

Output P(P)

: Function Conditioning(L)

: If L has a single co-atom Then proceed with IndepStep

: Remove from L all elements that are not co-atomic (Prop 2.4)
cLetZ ={u|u€L,u(ul)=0}

: Let ZA = {u | u € L,u covers some z € Z}

: If Z = () Then E := [u, 1] for arbitrary u

Else F := the join-closure of Z U ZA

: If £ = L then FAIL (unable to proceed)

: Let uq, ..., ux be the minimal elements of L — FE

: Return Conditioning(F) + >_,_, , Cond1(u;, £)

SO PTDUE W —

—_
N —

where Cond1(u, F) = R
Conditioning(u) + Conditioning([u, 1] A E)

—_
[9¥]

8. REFERENCES

[1] J. Boulos, N .Dalvi, B. Mandhani, S. Mathur, C. Re, and
D. Suciu. Mystiq: A system for finding more answers by
using probabilities. In SIGMOD, 2005. system demo.

[2] N. Creignou and M. Hermann. Complexity of generalized
satisfiability counting problems. Inf. Comput, 125(1):1-12,
1996.

[3] Nadia Creignou. A dichotomy theorem for maximum
generalized satisfiability problems. J. Comput. Syst. Sci.,
51(3):511-522, 1995.

[4] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, Toronto, Canada, 2004.

[5] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries
on probabilistic structures. In PODS, pages 293-302, 2007.

[6] N. Dalvi and D. Suciu. Management of probabilistic data:
Foundations and challenges. In PODS, pages 1-12, Beijing,
China, 2007. (invited talk).

[7] Adnan Darwiche. A differential approach to inference in
bayesian networks. Journal of the ACM, 50(3):280-305,
2003.

[8] Kevin H. Knuth. Lattice duality: The origin of probability
and entropy. Neurocomputing, 67:245-274, 2005.

[9] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. J. Comput. System Sci.,
73(3):507-534, 2007.

[10] Dan Olteanu and Jiewen Huang. Secondary-storage
confidence computation for conjunctive queries with
inequalities. In SIGMOD, pages 389-402, 2009.

[11] Dan Olteanu, Jiewen Huang, and Christoph Koch. Sprout:
Lazy vs. eager query plans for tuple-independent
probabilistic databases. In ICDE, pages 640-651, 2009.

[12] Yehoushua Sagiv and Mihalis Yannakakis. Equivalences
among relational expressions with the union and difference
operators. Journal of the ACM, 27:633-655, 1980.

[13] Richard P. Stanley. Enumerative Combinatorics. Cambridge
University Press, 1997.

[14] Ingo Wegener. BDDs—design, analysis, complexity, and
applications. Discrete Applied Mathematics,
138(1-2):229-251, 2004.

APPENDIX
A. SOME PROOFS

Proof of Proposition 2.4

PROPOSITION A.l. [13, pp.159, exercise 30] Let ([2, <) bea
finite lattice. A mapping v — T on L is called a closure if forall
2,y €L (a)z < T, (b)ifx <ythenT < §,and(c)T =7. A
closed element is an element x s.t. x = Z. Denote L the subset of
closed elements. Then:

ﬂi(fvg) = Z Mﬁ(i.vz)

COROLLARY A.2. Let L C 7ﬁ be a subset that is closec{ un-
der meet. If all coatoms are in L then forall u € L, pg(u,1) =

pg (u, 1).

PROOF. The mapping x — T = A y is a closure. The

yeL:y<z X
proposition follows from the fact that the only element z s.t. Z =1

isz=1 (because all coatoms are closed). [

PROOF. (of Proposition 2.4) (1) See [13]. (2) Apply Corol-
lary A.2 to the set of co-atomic elements. []

Proof of Proposition 4.5
PROOF.

e Let V = Vars(y) and construct a graph on V' such that
(u,v) is an edge whenever some atom of ¢ imposes the con-
straint w < v based on ranking. This graph is acyclic because
there exists a valuation h from ¢ to a ranked structure, which
means h(u) < h(v) for all edges (u,v). Let z1,..., 2y
be a topological ordering of V/, i.e., such that 7 < j for all
edges (zi, ;). Replace each x; with ¢ in ¢, and let A be the
ranked structure consisting of all atoms in ¢ after this map-
ping. Clearly A |= ¢, hence A |= ¢': the latter gives a val-
uation ¢’ — A, which, composed with the mapping i — x;,
gives a homomorphism ¢’ — .

e Standard argument, omitted.

e Assume for contradiction that there exists p, s.t. V4, it is not
the case that ¢; = <p'p. Let A; be astructure s.t. A; = ¢; but
A; ~ pp. The active domain of A; is unconstrained by ¢;
because the sentence is in reduced form, and hence contains
no constants. Hence we may assume w.l.0.g. that for i1 #
12, the structures A;, and A, have disjoint active domains.
Define A = |J, Ai. Then A = \/ ¢;, implying that A |=
\ ¢%. In particular, A |= ¢, hence there exists a valuation
¢, — A. Since the active domains of each A; are disjoint,
its image must be contained in a single A ;, contradicting the

fact that @; # ¢,
|

Proof of Theorem 5.7

PROOF. By induction on the length of unsafety proof. (1) As-
sume ¢ is unsafe because ¢ — ¢[a/V] and ¢[a/V] is unsafe.
Suppose we are given an input structure A. Remove from the input
structure A all tuples that do not have the constant a on the position
of the separator variable: this does not affect the value P(p[a/V]).
Denote B the new structure. Thus, Pa(p[a/V]) = Pr(p). (2) As-
sume ¢ = o V @1 and @1 is unsafe. Let A be a structure. Remove
from A all ground tuples that occurs in g; this does not affect
P(p1), because the alphabet is ranked, hence ¢o and ¢; are inde-
pendent; call B the new structure. Then Pa(p1) = Ps(p). (3)

Assume ® — ¢, where ¢ = A(u), for u € L¢ s.t. pu(u, 1) # 0.

Here we will choose w s.t. it is a maximal element in the lattice
with this property. In other words, forall v > w, A(v) is safe.
That is, we choose a particular rewriting from & into a sentence
without separator. Let A be an input structure. We construct a
new structure B by adding some more tuples to A, as follows.
Write ¢ = \/ ;. Letv € L be such that w £ v, and denote
¢ = AMv) =V, ;. Since ¢’ % ¢, there exists a component ;
s.t. for any 7, 7} # ;. Let A, be a structure obtained from +; by
substituting a fresh constant for each variable; that is, A, = ;.
Moreover, set the probabilities of all these tuples to 1. We claim
that Pa (p) = Paua, (). Suppose a component ; of ¢ is true
on some substructure of A U A . Since -y; is a component, it must
be true in either a substructure of A or in A,: to prove this we
use that fact that the only constants shared between A and A,
are those in C (the constants in ®), and none of the variables in
~; can be mapped to C (because the vocabulary is ranked w.r.t.
(), hence, since -y; is a component it is mapped either entirely to
one or the other. But «; cannot be mapped to A, because that
would mean that there exists a homomorphism ; — +}, implying
v; = ~vi. Thus, we can add to A all structures A, for all v s.t.
u &£ v, without affecting the probability of . Denote B the result-
ing structure. We have: , P(y) can be reduced in PTIME to P(®),
because Pp(®) = Pr(A,cp AMv)) = Pe(\,>, A(v)) because
for all v % u, A(v) is true on the substructure A, and all those tu-
ples have probability 1. Mobius’ inversion formula gives us gives
us Pp(®) = — >, o, w(v,1)Pe(A(v)). Forv = u, we have
w(u, 1) # 0and Pg(A(u)) = Pa(A(u)) = Pa(p). Forv > u we
have that A(v) is safe, and therefore we can compute Pg(A(v)) in
PTIME using Algorithm 5.1. This gives us Pa(¢). [

Proof of Prop. 5.8.

We start with some definitions that we will use in subsequent
proofs. Fix a positive sentence ¢ (or a disjunctive sentence). Two
distinct variables z, y in ® are co-occurring if there exists an atom
that contains both = and y. Two pairs of variables (x, y) and (z', y")
are unifiable if there exists two unifiable atoms 7 and 7’ such that r
contains x, y on the same positions as v’ contains z’, /.

DEFINITION A.3. The unification graph G(®) of a positive sen-
tence P is the undirected graph where the nodes are pairs of co-
occurring variables (x,vy), and there is an edge between any two
unifiable pairs of variables (x,y) and (z',y").

For a variable x denote atoms(z) the set of all atoms that con-
tain'? z. Given two co-occurring variables x, 3, we denote = >> y
if atoms(x) — atoms(y) # 0. Call a variable z a root variable"
if there is no variable y s.t. © < y.

DEFINITION A.4. [5] Aninversion is a path (zo,Yo), - - -, (Tk, Yk)

in G(®) s.t. zo > yo and x, K yr. We call k the length of the
inversion. A root inversion is an inversion where all variables other
than yo and xy, are root variables.

An inversion of length 0 is a pair (zo, yo) where xo > yo and
zo K Yo: since x9 = xy, any inversion of length O is also a root
inversion. The sentences hy are canonical examples of sentences
having root inversions of length k, for k = 0,1,2,...:

hO = R(xo)’ Sl (:Eo, yO): T(yo)

21f & € Var(yp;) then atoms(x) C Atoms(y;).

B This is consistent with the earlier definition of a root variable:
when ¢; is a single component then x occurs in all atoms iff there
is no variable y s.t. © < y.

h1 = R(z0), S1(z0,y0) V S1(x1,91), T(y1)

ha = R(z0), S1(z0,y0) V S1(x1,91), S2(x1, 1) V S2(z2,y2), T (y2)

hi, = R(=0), S1(x0,v0) V S1(z1,91), S2(z1,91) - - V S (xk, yr), T (yx)

Each sentence has a root inversion from (zo, ¥o0) to (2, Yx)-
The following are easily checked.

LEMMA A.5. (a) A root variable x is a maximal root variable
iff it does not participate in any root inversion. (b) If a disjunc-
tive sentence has at most two variables in each atom then it has a
separator iff it has no root inversion.

We can now proceed to the proof of Prop. 5.8.

PROOF. (Sketch) Assume wlog that ¢ is in reduced form, and
all relations are ranked. Let L be “large enough” (to be specified
below). Let a be the largest arity of any relation name, and v be
the maximum number of variables in any component of ¢. Let
R(Ai,...,Ay) be a relation name. Consider all strictly increas-
ing level functions m : [k] — [L] s.t. m(k) — m(1) < v. For
each m denote R™ a fresh relational symbol leveled by m. For
each component v;, denote M a mapping from each atom r to a
mapping m for r; denote v the component obtained by replac-
ing each atom a leveled one. Retain only the consistent levelings,
i.e. where each variable occurring in multiple atoms is assigned
the same level. Let o~ = \/ iM vM Clearly T is equivalent to
o over L-leveled structures, in the following sense. For each L-
leveled structure AL denote A the structure where, for every rela-
tional symbol R, R* = (R™)*". Then A = piff A¥ |= .

Next we show that ¢ has no separator. Let ~; be a component
that has no maximal variables. Let M be a level labeling of the re-
lations in +; that places them “in the middle” of the range L. Since
v, is connected and each relation has a spread of levels < aw, it fol-
lows that the spread of M is bounded by a, v, and the size of ;. We
use the fact that ; has no maximal variables to prove that 7 also
has no maximal variables. Assume for contradiction that v has a
maximal variable x. We use the fact that v; has no maximal vari-
ables to prove that (which is a root variable) recursively unifies
with a non-root variable. Indeed, = recursively unifies with some
variable y in ¢. This is indicated by some sequence of variables
x,v1,v2, ...,y where each consecutive pair is unifiable. Assume
wlog that this list does not contain duplicates: otherwise, the por-
tion between the duplicates could be removed. We trace the same
sequence in o, where only predicates with the same level label-
ing are allowed to unify (different label functions on the same R
are treated like different relational symbols). We need to check that
all the consecutive pairs are indeed unifiable in ¢: the labels may
be “pushed out of range”. However, each unification step between
fsz “ and fijj can shift the range of M only by an amount that is
bounded by the sizes of ~; and ;. Moreover, since the sequence is
has no duplicates, its length is bounded by the size of ¢. Thus, by
choosing L “large enough” we ensure that if we start at the middle
of the range [L] we will not get out of range while following the
sequence. [

Example A.6 Let:

Y = R($7y)>s(yvz)\/R(x/7y/)7s(x/7yl) =%Vm

Suppose both R(X,Y") and S(X,Y) are ranked as X < Y. There
is an inversion (z,y), (z’,y"), (y,) that goes twice through the
first component, o, and uses y twice, in two different positions.
Leveling avoids this. To level this sentence, we choose L = 4, and

consider three leveling labels for both R and S: 12, 23, and 34.
The sentence becomes:

" = Ros(z2,ys

Riz(z1, Y2
Ros (x5, y3

)> S34(y3, ua) V
), S23(y2, 23) V
)a 823(33/2, yé)
And inversion is (x2,y3), (v5, ¥4), (y2, 23).
Proof of Theorem 5.9
Thus, we will assume that ¢ is leveled. For each variable z,
denote [(x) its level. Whenever two atoms r and r’ unify, every

pair of variables that are equated are at the same level.
Denote:

rt(i) {l(x) | is a root variable in ¢; }
g() = {i|rt(i) = {l}}
v(l,i) = {z|zeVars(yv),l(z)=1}
v(l) = Uv(l,i)
UNIQUE = {i|3ieqg()}

A level is in the UNIQUE set if there exists a component «y; that
has a unqiue root variable, which is at that level.
Given a level [and a set of constants A, we denote:

w[A/l] = Vo)

O:v(li)—A

\/ w4/

plA/l]

This is the sentence obtained by substituting variables at level [with
some constant in A. For example, if A = {a,b, ¢} and there are
two variables x, y at level [(in the same component, or in different
components), then p[A/l] = ¢la/x,a/y] V vla/z,b/y]V ...V
ple/x, ¢/y]. If we restrict the class of leveled structures s.t. the
level [contains only constants in A, then obviously ¢ = ¢[A/l].

Suppose ¢ has no separator. Our theorem follows from the fol-
lowing two lemmas.

LEMMA A.7. Suppose o has no separator, andletl UNIQUE.
Let A be a set of constants not occurring in @ s.t. |A| > |v(l,1)]
for all i. Then ¢[A]l] has no separator.

PROOF. Given a component «y; and 6 : v(l,i) — A, denote
~i[6] the conjunctive sentence obtained from ~; by substituting
each variable at level [with some constant in A. First, we note
that ~;[0] is connected: indeed, if ¢ ¢ g(l) then none of the root
variables of ~; gets substituted with a constant, and ~;[f] is con-
nected. If & € g(I) then |rt(i)| > 2 meaning that ; has at least
two root variables. At least one remains after substituting one root
variable with a constant.

Consider now a 6 : v(l,i) — A that is injective: there exists
such 0 because |A| > |v(l,7)|. Then ~;[6] is non-redundant in
the expression ¢[A/l]. More precisely, there is no homomorphism
v;10’] — ~:[6]: this is because any such homomorphism gives rise
to a homomorphism ~; — y; contradicting the fact that ¢ is non-
redundant.

Finally, we show that ¢[A/I] has no separator. Suppose it had a
separator V. Construct a separator V for ¢ as follows. For each
component ~;, let 6 be any injective substitution 6 : v(l,7) — A.
Define the separator variable x; for v; to be the same separator
variable for v;[0] (the two sentences are isomorphic and “the same
variable” means up to this isomorphism). Note that this definition

is independent on our choice of 6. Indeedq, if 6’ is another injective
substitution that agrees with 6 on at least one variable = (6(x) =
0’ (z)) then +;[6] and ;[¢’] have two atoms that unify, hence their
separator variables must unify, which means that they correspond
to the same variable in ~;. It is easy to check that the set {z; |
1 =1,...} isindeed a separator for : if ; and -y; unify, then there
exists substitutions 6, 8’ s.t. +; [0] unifies with ~;[¢’], and therefore
the separator variables must unify as well. [

Let ; be a component with a single root variable x. Define the
subcomponents of y; as follows. Construct a graph where the nodes
are the atoms of ~; and there exists an edge between two atoms if
they share at least one variable other than x. Denote sc(v;) the
subcomponents of ;. One can write

~vi = 3z.o1(T) A A om(x)

where any two subcomponents o;(z) and o;(x) share no other
variables except x. Equivalently, the sentence ~y;[a/x] consists of
m connected components, o;[a/xz], for i = 1, m. Denote the fol-
lowing:

/

<"y if Vo€ sc(y)3o €sc(y)o =0
1<'k if Vjegk)3iegl)y < v

Here 0’ = o means logical implication, and is equivalent to the
existence of a homomorphism o — o”.

PROPOSITION A.8. Assuming that o is non-redudant and all
components are minimized: < is a partial order on UNIQU E.

PROOF. Both <” and <" are standard powerdomain orders, and
hence are transitive. We prove antisymmetry. Suppose [,k €
UNIQUE and ! <* k <* I. Then forall p € g(l) exists j € g(k)
and further exists i € g(I) s.t. 7 <” 7; < 4. This means that
forall o € sc(v;), 30’ € sc(y;) s.t. there is a homomorphism
h : 0 — o'; and there further exists 0’ € sc(7,) s.t. there exists
a homomorphism A’ : 0/ — ¢”/. Compose these two homomor-
phisms to get b’ : ¢ — o Let x be the root variable at level [
in 7;: clearly A" (z) = x, because any homomorphisms preservers
levels, and there can’t be another variable at level in ~y, (since it
would have to co-occur with the root variable). Let now o range
over sc(v;): since all b’ agree on = and is the unique root vari-
able in ~y; (since I € UNIQU E), it follows that we can stitch them
together to get a homomorphism f : v; — ~,. Since ¢ was non-
redundant, f must be an isomorphism and also ¢ = p. It follows
also that -y; is isomorphic to v;, which implies ¢ = 7, contradiction
since we assumed that their roots are on different levels. [

LEMMA A.9. Suppose UNIQUE has at least three elements.
Let | € UNIQUE be a maximal element w.r.t. the partial or-
der <*. Let A be a set of constants s.t. |A| > |v(l,1)| forall i.
Then, if ¢ has no separator, then p[A/l] has no separator.

PROOF. The proof extends the previous proof. Here we need to
cope with the fact that, if ¢ € g(I) then ~; may have a unique root,
and that is at level [; hence, for every constant a, ~y;[a/l] consists
of more than one connected components, 01, 02, . .. Transforming
the sentence into CNF, it will have a set of coatoms where each co-
atom contains a single o;. We need to show that these do not make
certain other components redudant.

Letk € UNIQUE, k # land j € g(k). Suppose ~; has a
unique root, at level k. Consider a sentence y;[6] in the substitu-
tion v;[A/l] = \/,7;[6]. This sentence is still connected because
its root is at level k£ and we are only substituting at level /. More-
over, if 6 is injective, then k remains the single root for ~;[0] (we

have shown this earlier). Assume ~;[0)] is not redudant in p[A/I].
Then if ¢[A/l] has a separator, it must be at level k. However,
UNIQUE has at least three elements, there will be a second such
k' € UNIQUE, k' # l and k' # I. Arguing similarly, every
separator of ¢[A/l] must be at level k', proving that there cannot
be a separator.

Thus, it remains to prove that at least one -;[6] is non-redudant.
‘We have shown it earlier to be non-redudant, but now we have some
new subcomponents o; that could make it redundant. We want to
show that there can be no homomorphism o; — ~;[6].

Formally, let 6 be an injective subsitution v(l, j) — A and con-
sider ;[6]. Let x be the root variable in ~y; (the level of x is 1).
Then o € sc(y;) makes ;6] redundant if there exists some con-
stant @ and a homomorphism o[a] = ;[6]. This corresponds to a
homomorphism h : ¢ — ~;. The root of ; is on a different level
from that of z, hence h(x) is a non-root variable. It follows that the
entire image of i must be contained in some sub-component of y;:
h:o — o'. Equivalently: 0’ = o.

Transform ¢[A/!] into CNF by apply the distributivity law to
Yila/z] = Vyese(yy) ola/]. Each disjunct will contain a single
o. We need to show that in at least one such disjunct, o does not
make ~; redundant. Taking the negation: -, is completely redun-
dant if: forall o € sc(v;), 3o’ € sc(v;) s.t. o' = o. Equivalently:

b
Yi <7 -

We only need to have at least one ~; with j € g(k) that is not
completely redundant: this suffices to argue that one component in
©[A/!] has a unique root at level k. The negation of this property
is the following. We lose the entire level k if: V5 € g(k), 3 € g(I)
sty < ;. This is precisely ! <* k. But this cannot happen
because we have chosen [to be a maximal element in this order,
and k # [.

It follows that, forall Kk € UNIQUE, k # [, there will be
a component in p[A/I] that has a single root, on level k. Since
UNIQUE has at least three elements, it follows that ¢[A/!] cannot
have a separator. [

This completes the proof of the theorem. We recap it, and sum-
marize it.

Let ¢ be a disjunctive sentence without separators. Consider the
following two rewriting:

Rule 1 If there exists | ¢ UNIQUE s.t. v(l) # 0 (i.e. there are
variables on level [), pick any set of constants A s.t. |A| >
|v(l,)| forall ¢, and rewrite:

p — plA]]]

Rule 2 If there are at least three distinct levels with variables in
UNIQUIE, then let [be any maximal level in the order gﬁ.
Pick any set of constants A s.t. |A| > |v(l,)] forall ¢, and
rewrite:

o — lA/]

Rule 3 If neither rule 1 nor rule 2 apply, then stop: the sentence
has at most two variables in each atom, and has no separator.

To get a better insight of the lemma we illustrate with a few ex-
amples.

Example A.10 In the examples below we always refer to the com-
ponents as y1 V 2 V ... Further assume that the variables z, y, 2
are assigned to levels 1, 2, 3.

For a trivial illustration of rule 1, consider:

R(x), S(z,y,2) V S(=,y,2), T(y)

Then: rt(1) = {1}, rt(2) = {2}. In words: “the root of ~; is
x, the root of 2 is y”. Both 41 and ~2 have unique roots, hence
UNIQUE contains the levels 1, 2. The Rule 1 can only be applied
to levels not in UNIQUE, which leaves level 3: we substitute z with
one constant and obtain:

R(x),S(z,y,a) V S(z,y,a), T(y)

This has at most two variables in each atom and has no separator.
For a small variation, consider

= R(z),S(z,y,2) VS(z,y,2),T(y) VU (z,y,2),V(z,y,2)

Then: rt(1) = {1}, rt(2) = {2}, rt(3) = {1,2,3}. We can still
apply Rule 1 to z, since the only component that has z as root has at
two extra roots: in other words, UNIQUE = {1,2}. After Rule
1 the sentence becomes:

= R(x),S(x,y,a) VvV S(x,y,a),T(y) VU(x,y,a),V(z,y,a)

For a more complex example, consider:

U(z) R(z,z2), S(z,y,2)
v S(x,y,2), T(y,z)
vV R(z, z), T(y,z)

Here rt(1) = {1}, rt(2) = {2,3} and rt(3) = {3} (that is,
1,72, v3 have roots {z}, {y, 2z} and {z} respectively). Levels 1
and 3 are in UNIQUE: level 1 appears as root in ; which has the
single root x; level 3 appears as root in «3 which has it as the single
root. But we can use level 2 (y) in rule 1, and obtain:

U(z) R(z,2), S(z,a,z)
V S(z,a,2), T(a,z)
Vv R(z, z), T(a,z)

This hast at most two variables in each atom, and no separator.

Example A.11 We illustrate now the need for Rule 2. This re-
quires a more complex example. Consider ¢ below:

R(%?Jl&é)v S(x,y17zé/),R(x7yé:Z1)7 S(mvygzzl)
\ R(.’L’l, Y, Zé),T(JZl, Y, Zé’), R(x/m.% 21)7 T(x/2/7 Y, Zl)
\ S(mhyé>Z)7T(x17yl2/7Z)7S(m/2>y17z)7T(m,217y11 Z)

1, 72,73 have the unique roots z,y, z, so all three levels are in
UNIQUE. We need to apply Rule 2, and that will split one com-
ponent into two subcomponents. We compute <*, which is trivial
here, since 71, 2, 3 are incomparable: hence each of them is max-
imal. Pick arbitrarily the variable z and substitute with three con-
stants A = {a1, a2, as} (because there are up to three z-variables,
e.g. in 1 there are 23, 25, 21). Then pla/z] = p1 A 2 where:

result in simpler rewritings. In the example above, we could chose
levels 2 and 3 and equate all the y;’s with all zj’s, to obtain:

R(z,y1,9y1), S(x,y1,y1), R(,y2,y2), S(, y2, y2)
Vo R(z1,y,y), T(z1,9,9), R(z5,y,), T (23, y,y)
Vo S(z1,y,2),T(21,y,2), S(25,y, 2), T(x3, y, 2)

(Technically we can’t do this directly, since the structure is ranked,
hence in R(z,y, z) we have x < y < z; instead we would in-
troduce functional dependencies y — z and z — y in the ranked
structure, which for all practical purposes is like equating y = z.)
Thus, we have arrived much easier to a sentence with at most two
variables per atom and without separators. One wonders if Rule
2 can be replaced with this rule. However, this doesnt work as il-
lustrated by the following sentence, with 6 components. We show
only the first component, y; =

R(l’7y1721), S(x>y17zil)>T($7y17z2)7R(x>y2723)7S(m7y2>zil3)7T(x7y2>Zg)

The hierarchy between variables is unique among levels: x > y >
z, where z is the root, y denotes the level with y1,y2 and z the
level with 21, ... Consider all six permutation of this ordering of
the levels, to obtain 6 components. Each of z,y, z is the unique
root in two of the components.

Lets examine first what happens if we apply rule 2 but choose
|A| = 1. The order <* is here the identity, so all three compo-
nents are maximal, and Rule 2 allows us to set, say, level 3 to a
constant a. For example setting z = a in 1 shown above results
in v1[a/3] = R(z,y,a),S(z,y,a), T(x,y,a), because of min-
imization. Furthermore the other 5 components are now redudant
(they all have a homomorphism to 71 [a/3]), and the entire sentence
is equivalent to just this expression, which is a safe sentence. Thus,
we cannot apply rule 2 with a single constant, but need to chose a
set A with more constants.

Lets examine now what happens if we apply our new rule, equat-
ing two variables. THis has the same effect: for example, after set-
ting y = z, y1 minimizes to R(z,vy, 2), S(z,y, 2), T (z,y, z); this
is also safe.

The only rewriting is Rule 2, but done correctly, by choosing
more than one constant for z, in order to ensure that one combina-
tion does not minimize.

Proofs from Section 6

PROOF. (Of Prop. 6.4) Consider the lattice [z,1]: we have'*
Bei) (25 1) = pr(z,1) = 0. The set E N [z,1] is closed un-
der joins (because E is closed under joins) and contains all atoms,
hence the claim follows from the dual of Corollary A.2. [

PROOF. (Of Prop 6.5)
Let U C L — E s.t. U has a smallest element u € U. Denote

PROOF. Here U A E denotes {u Av |u € U,v € E — {1}}. It

Y1 = \/ R(xayhail)aS(xvyhaiz)vR(xvyévaiB)vs(xvyélvaiSU/\E
11,142,913
N \/ R(xlyyvajl)aT(xlvy7aj2)7R(xl27y7aj3)7T(x/2/7y7a13) LeMMA A.13. U/\E:{U}AE
J1,J2,J3
\Y

\/S(:C17yé7ak)vT(xlvy;l7ak)
k

and similarly for 2. Note that, when i; = i2 = i3 the sentence
in the first line minimizes. However, when the three constants are
distinct, then it doesn’t minimize (it is isomorphic to v1).

Example A.12 Consider a new rule: “equate all cooccurring pairs
of variables from two chosen levels [, k”. In some cases this may

suffices to how that forall u’ € U andv € L— {1}, uAv = u' Av.
TO PROVE. [

To prove Prop 6.5 it suffices to note that, in the lattice [z, w] the
top element w is not a join of atoms. The claim follows from the
dual of Proposition 2.4 (1).

'“This is a standard fact in incidence algebras: uz,(z,y) depends
only on the sublattice [z, y].

B. PROOF OF THE FACT THAT FORBID-
DEN SENTENCES ARE HARD

We include here a proof of a simplified variant of Theorem 5.10.
We will refer to sentences as queries in this section.

B.1 Forbidden Queries

Let g be a forbidden query over relations R = {R, S1,- -+ , Sk, T'}.

We can represent g using a set {1, --- ,7x}, where each ; is a
subset of R. The sets satisfy two properties, (i) no set is redundant,
i.e., contained in another set, and (ii) there is a chain v;,,--- ,7;
such that R € v;,, T' € ;, and each adjacent pairs intersect.

Before we prove the hardness of forbidden queries, let us study
some of their properties which we will use in our hardness proof.
Each forbidden query ¢ = {71, ,7x} defines a DNF formula
¢(q) over the vocabulary R, where each ; is a clause. For 7, j €
{0,1}, let n; ;(q) denote the number of non-satisfying assignments
of ¢(¢q) when R is setto ¢ and T is set to j.

As an example, consider ¢ = {{R, S1},{S1,S2},{S2,T}}.
Then, n1,1(q) is the number of non-satisfying assignments when
R =1and T = 1. We see that S; has to be 0 (otherwise { R, S1}
will evaluate to true). Similarly, Sz has to be 0. Thus, there is only
1 assignment and so n1,1(q) = 1. For ni,0, S1 has to be 0 and
So can either be 0 or 1. Hence, n1,0 = 2. Similarly no,1 =
2. Finally, n1,1 = 3, since S1,S2 cannot be both 1, but oth-
erwise can take values for any other combination. We observe
that n1,1(¢)n0,0(q) # n1,0(q¢)n0,1(q). This is an important prop-
erty that we will exploit in our hardness proofs. Define A(q) =
n1,1(¢)no,0(q) — n1,0(q)no,1(q). We will give a hardness result
for any forbidden query ¢ that has A(q) # 0. However, note that
there do exists forbidden queries with A(g) = 0. We use the fol-
lowing reduction technique to handle such queries.

Reducing Forbidden Queries.

Given any query ¢ = {y1,...,7%}, we can set one of the rela-
tions to be empty to reduce it to a new query q’, whose set repre-
sentation consists of all the sets of ¢ not containing S;. If ¢’ is also
hard, then we can show hardness of q using ¢’. E.g., is ¢ is given
by

{{R, S1},{51,S2},{52,T},{R, S3,S51},{S3,T}}

we can set S3 to be empty to obtain {{R, S1}, {S1, S2}, {S2,T}},
whose hardness guarantees hardness of ¢ Similarly, we can set any
relation .S; to be deterministic relation containing all possible tu-
ples from the active domain to obtain a new query ¢’, where S; is
removed from all sets. E.g. if we have {{R, S1, S2},{S1,T}}, we
can set Sz to be deterministic to obtain {{R, S1},{S1,T}}. We
say that ¢ is reducible to ¢’ if we can obtain ¢’ from g by setting
a subset of relations to be empty and a subset of relations to be
deterministic.

THEOREM B.1. Any forbidden query q is reducible to a query
q with A(q') # 0.

The above result shows that it is enough to prove the hardness
for queries with A # 0. In the rest of this section, we will prove
this result. First, we start with a simple result. Let ng . (¢q) denote
the number of non-satisfying assignments of ¢ when 7" is set to
0. Similarly define n.,0(q) and n. .(g) (which is simply the total
number of non-satisfying assignments).

LEMMA B.2. A(q) = N« (¢)10.0(q) — 1x,0(¢)10,4(q).

This follows directly from definitions. Next we show the fol-
lowing result. Given four polynomial functions f, g, h, k, define

A(f,g,h,k) = fg — hk. Define a weak assignment of a polyno-
mial as any mapping of variables to the set {0, 1,1/2}.

LEMMA B.3 (FOUR-FUNCTIONS LEMMA). Let f, g, h,k be
any four multi-linear such that A(f, g, h, k) = 0 for all weak as-
signments. Then, A(f, g, h, k) is identically 0.

PROOF. We induct on the total number of variables. If all the
four functions are constant, then the lemma follows trivially. Oth-
erwise let « be any variable. Since f is multi-linear, we can write

f=0-2)fo+zfl

where fo = flz = 0] and f1 = fi[z = 1]. Similarly for g, h, k.
Thus, A(f,g,h, k) =

= fg—hk

= (A =2)fo+af1)((1 —x)go +zgl) — (1 — x)ho + zh1)((1 — z)ko A

= (1—2)*A(fo, 90, ho, ko) + 2 A(f1, 91, ha, k1) +

z(1 — z)[A(fo, 9o, ho, ko) + A(f1, 91, h1, k1) — A(f1 — fo,91 — go,

The last equation can be verified by expanding the terms. Now,
for every weak assignment, A(fo, go, ho, ko) = 0. To see this,
set x = 0 in the above equation and note that along with x = 0,
this gives a weak assignment of f, g, h, k for which A(f, g, h, k)
is 0. Similarly, by setting x = 1, we get that A(f1, g1, h1,k1)
is O for all weak assignments. Finally, by setting = = 1/2 in the
above equation and using the fact that both A(fo, go, ho, ko) and
A(f1, g1, h1, k1) are O for a weak assignment, we get that A(f1 —
fo,91 — go,h1 — ho, k1 — ko) is O for any weak assignment. By
induction, each of the three A functions are identically 0. Hence,
A(f, g, h, k) is identically 0. [

Now given a forbidden query g with the corresponding DNF for-
mula ¢(g) over R, define a variable zw for each W € R, and
let p(¢(q)) be the polynomial that gives the probability of g be-
ing false when the variable W is made true with probability .
We see that p(¢(q)) is a multi-linear polynomial, where there is a
monomial for each non-satisfying assignment of ¢(q) with a factor
xw if W is true and (1 — zw) if W is false.

Let a = ¢(q), b = Tr, ¢ = Tr and let let f; = p(a),
gq = plaANbAc), hg =p(gAa)and k; = p(a A c). By the
above lemma, if A(fy, gq, hq, kq) is not identically 0, then there
is some weak assignment for this the quantity is non-zero. Con-
sider this assignment 7. Let ¢’ be the query obtained from ¢ by
making all the O variables of 7 deterministic and all the 1 vari-
ables of 7 deterministic. Then, we get that A(f7, g, hy, ky)! = 0
when all the variables are set to 1/2. But this is precisely equal to
2#0973(@) (n, (')n0,0(q') — 11,0(q)0,+ (")) By Lemma B.2,
this would imply A(q’) # 0. Thus, to prove Theorem B.1, all we
need to show is that A(fq, gq, hq, kq) is not identically 0. For this
we use the following result

THEOREM B.4. [9]If A(a,aANbAc,aNb,aAc) is identically
0, then we can partition the variables into S1 and Sa such that
a=aiNaz2, aNb=a1 ANbz, a\c=azAce, and ai, b;, c; only
refer to variables in S;.

For the above result we can show that A(fq, gq, hq, kq) is not
identically 0. If not, we can partition R into S; and S» such that
a = a1 Naz,i.e. S1 and So are not connected in ¢, a Ab = a1 Aba,
which implies that R € Sy and a A ¢ = a2 A c2, which implies
that T' € Sa. This contradicts the definition of a forbidden query.
Hence, we prove Theorem B.1.

B.2 Hardness of Queries With Deita # 0

Let ¢ be a query over relations R, S1, - - - , Sk, T with A(q) # 0.
The basic unit of our construction is a link, as defined below. Let
a, b be constants. Let ¢ be a unique constant. A /ink between a and
b is the following structure:

L(a,b) = R(a), S1(a,c),- - ,Sk(a,c), T(b), Sk(b,c),---

A multi-link between a and b of multiplicity v, denoted by L (a, b),

is simply a collection of v links between @ and b. Note that each
link is created by using a new unique constant. Thus, L1 (a, b) is
simply L(a, b). Also observe that multi-link is a symmetric struc-
ture, i.e. Ly(a,b) = Ly(b,a). Let R(a) and R(b) denote the
end-points of the link. Finally, a chain between a and b is con-
structed by creating links between a and b, i.e., for unique constants
c1,- -+ ,Cy, achain of length v and multiplicity v is given by

CUJ’(GH b) = Lv(a7 Cl)7 LU(Cl7 62)7 Tty LU(CU—17 Cu)7 LU(CTM b)
©))

Given a bipartite monotone Boolean formula ¢, the construction
involves simply creating a chain between each pairs of variables
that define a clause. Before we describe this construction, let us
study some properties of links and chains, specifically evaluation
of forbidden queries over links and chains.

In the rest of the section, we assume that g is a fixed query and
all the notations are w.r.t this query. For i = 0,1,2, let n;(v)
denote the number of possible worlds of L, (a, b) that do not satisfy
q when exactly ¢ of its end-points are false (i.e. not included in the
possible world). For ¢ = 1, it does not matter whether R(a) is
false or R(b) is false, since links are symmetric. So n;(v) is well-
defined.

LEMMA B.5. Fori=0,1,2 n;(v) = nY(1).

PROOF. The only tuples that two different links between a and
b share are the end-points R(a) and R(b). Further, any mapping
of g to a multi-link is completely contained in one of the links. So
once the truth assignment for the end-points is fixed, each of the v
links can be independently counted. [

Let n;(u,v) denote the number of possible worlds of a chain
Cu,v(a,b) of length v and multiplicity v. Again, since chains are

symmetric, n; (u, v) is well-defined.

LEMMA B.6. We have the following recurrence:

n2(u,v) = na2(v)n2(u —1,v) + ni(v)ni(u — 1,v)
ni(u,v) = na2(v)ni(u—1,v) 4+ ni(v)no(u — 1,v)

= ni(v)n2(u —1,v) + no(v)ni(u — 1,v)
no(u,v) = mno(v)no(u —1,v) 4+ ni(v)ni(u — 1,v)

PROOF. We will only prove the first equation. Others have sim-
ilar proof. Consider the chain Cy,,(a, b) as defined in Eq. (9). In
na2(u,v), we look at possible worlds where R(a) and R(b) are true.
We group the possible worlds into two sets: where R(c1) is true and
where R(c1) is false. Observe that once we fix the assignment of
R(c1), the events that g is true on L, (a, c1) is independent of the
event that g is true on the rest of the chain.

For the case when R(cy) is true, there are na(v) ways to pick a
possible world of L, (a,c1) that do not satisfy ¢q. Also, there are
na2(u — 1,v) possible worlds of the rest of the chain where g is
false. Thus, there are na(v)n2(u — 1,v) worlds in the first case.
Similarly, there are n1(v)n1(u — 1,v) worlds in the second case.
This proves the first equation. [

Define the following:
a() = (no(v) —ni(v))/n2(v)
z(u,v) = mni(u,v)/no(u,v)
y(u,v) = n2(u,v)/no(u,v)

S1(b,c), R(b) CorROLLARY B.7. a(v)z(u,v) + y(u,v) = 1.

PROOF. Follows directly from the definitions and Lemma B.6
by using the two alternate expressions for 1 (u, v) and setting u «—
u+1. O

LEMMA B.8. If q is a forbidden query with A(q) # 0. Then
a(v) is not a constant function. Also, for any fixed v, x(u,v) and
y(u, v) are not constant functions.

PROOF. We have a(v) = (no(v) — ni(v))/n2(v), which, by
Lemma B.5, equal (ng(1) — n{(1))/n5(1). This is not a constant
iff no(1) # ni1(1). Now, since g is a monotone query, its nega-
tion is a anti-monotone query. Hence, no(1) > n1(1). To show
that the inequality is strict, we need to prove that there is at least
one possible world for S1, Sa, ..., Sk, T such that if both the end
points R(a) and R(b) are false than q is false, but it one end-point
is true than q is true. So consider any set K of ¢ containing R.
Make all the S; in K true and everything else false. This makes
the query false (because if this made the query true, then we would
have a set properly contained in K, which is not possible in forbid-
den queries). Setting any of the end-points 1 makes the query true.
This shows ng(1) > ni(1).

To show that z(u, v) and y(u, v) are not constant functions of w,
let us solve the system of recurrence equations in Lemma B.6.

na(v)ni(u — 1,v) + n1(v)no(u — 1,v)
no(v)no(u — 1,v) + n1(v)ni(u — 1,v)

ni(u,v) =
no(u,v) =

Denoting n1(u, v) by f(u) and no(u, v) by g(u), we can write the
equations in matrix form as below:

1)= (o) i) []

The solution of the recurrence is given by
f(u) = ANY + BAS
g(u) = CAY + DXy
where \; and A2 are the eigenvalues of the matrix. It is easy to
check that z(u,v) = f(u)/g(u) is not a constant function of w iff

both A; and A2 are non-zero and both of them are not equal to 1.
The eigenvalues are the roots of the equation

(A = no(®))(A — na(v)) — nd(v) = 0

Both the roots are non-zero iff no(v)n2(v) # n?(v), which is

equivalent to no(1)n2 (1) # n3(1). Now,

no(1) = noo(q)noo(q) + no1(g)n10(q)
n1(1) = n1o(g)noo(q) + nio(g)n11(q)
nz(l))

(q
= n10(q)no1(q) + na1(g)n11(q)
After substituting, we get no(1)n2(1) —ni(1) = A(q) # 0. Also,
both the eigenvalues cannot be 1, as this would imply
no(v) + na2(v) = 2
no(v)na(v) = ni(v) =1
Since each of these are positive integers, the only solution to this

is no(v) = n2(v) = 1,n1(v) = 0, which cannot hold because
n1(v) > n2(v) because of the anti-monotonic property. [

THEOREM B.9. The counting version of q is #P-hard.

PROOF. Proof is by reduction from #PP2DNF. Consider a bi-
partite monotone Boolean formula ¢ = Vz;y;. Let N be the total
number of clauses. We create an instance for ¢ as follows.

For each z;y; in ¢, create a chain of length u and multiplicity
v between z; and y;. Let A(¢p) be the resulting structure. Let
F(u, v) be the number of possible worlds of A(¢) that do not sat-
isfy g, as a function of u, v.

Let m(a, b) be the number of assignments of ¢ such that a clauses
have both variable false and b clauses have exactly 1 variable false
(and hence, N — a — b clauses have both variables true). Consider
a mapping from the possible worlds of .A(¢) to assignments of ¢,
where a variable z is 0 if the corresponding tuple R(x) is present
in the possible world.

Given an assignment of ¢ where a clauses have both variables
false and b clauses have 1 variable false, the number of possible
worlds of A(¢) that map to this assignment and do nor satisfy q is

given by n3 (u, v)n (u, v)nd ~*~°(u, v). Thus, we have

F(u,v) = Zm(a, b)ns (u, v)nf (u, v)ng " (u,v)

a,b

Let a(= a(v)), z(= z(u,v)) and y(= y(u,v)) be as defined
above. Then, we have

F(u,v)ng ™ (u,v) = Zm(a, b)z"y’ = Zm(a7 bz (1—ax)’
a,b a,b

The R.S.H can be viewed as a polynomial in z. By fixing v
(and thus «) and varying u, we can plug in different values of to
get all the co-efficents of the polynomial. The leading co-efficent is
Y aroen Mm(a;0) (—a)®. Now, we can view this as a polynomial in
«. By varying v, we can plug in different values of « to get all the
co-efficents. The sum of the co-efficents is precisely the number of
non-satisfying assignments of ¢. Thus, we can use g to count the
number of satisfying assignments of any ¢. [

